Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As

نویسندگان

  • S. Souma
  • L. Chen
  • R. Oszwałdowski
  • T. Sato
  • F. Matsukura
  • T. Dietl
  • H. Ohno
  • T. Takahashi
چکیده

Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures

The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga1-xMnxN/GaN(template) bilayers of various Mn concentration x. It is shown that the Fermi level in (Ga,Mn)N is strongly pinned in the middle of the band gap and the t...

متن کامل

Analysis of the Band-Structure in (Ga, Mn)As Epitaxial Layers by Optical Methods

The ternary III-V semiconductor (Ga, Mn)As has recently drawn a lot of attention as the model diluted ferromagnetic semiconductor, combining semiconducting properties with magnetism. (Ga, Mn)As layers are usually gown by the low-temperature molecular-beam epitaxy (LT-MBE) technique. Below a magnetic transition temperature, TC, substitutional Mn2+ ions are ferromagnetically ordered owing to inte...

متن کامل

Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys.

Influence of disorder, antisite defects, martensite transition and compositional variation on the magnetic properties and electronic structure of Mn(2)NiGa and Mn(1+x)Ni(2-x)Ga magnetic shape memory alloys have been studied by using full potential spin-polarized scalar relativistic Korringa-Kohn-Rostocker (FP-SPRKKR) method. Mn(2)NiGa is ferrimagnetic and its total spin moment increases when di...

متن کامل

Electrically driven magnetization of diluted magnetic semiconductors actuated by the Overhauser effect.

It is well known that the Curie temperature, and hence the magnetization, in diluted magnetic semiconductors (DMS) like Ga(1-x)Mn(x)As can be controlled by changing the equilibrium density of holes in the material. Here, we propose that even with a constant hole density, large changes in the magnetization can be obtained with a relatively small imbalance in the quasi-Fermi levels for up-spin an...

متن کامل

Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory

The influence of short-range Coulomb correlations on the Mott transition in the single-band Hubbard model at half filling is studied within cellular dynamical mean-field theory for square and triangular lattices. Finitetemperature exact diagonalization is used to investigate correlations within two-, three-, and four-site clusters. Transforming the nonlocal self-energy from a site basis to a mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016